Large Orbits on Markoff-Type K3 Surfaces over Finite Fields

نویسندگان

چکیده

Abstract We study the surface $\mathcal {W}_k: x^2 + y^2 z^2 = k x y z$ in $(\mathbb {P}^1)^3$, a tri-involutive K3 (TIK3) surface. explain phenomenon noticed by Fuchs, Litman, Silverman, and Tran: over finite field of order $\equiv 1$ mod $8$, points {W}_4$ do not form single large orbit under group $\Gamma $ generated three involutions fixing two variables few other obvious symmetries, but rather admit partition into $-invariant subsets roughly equal size. The is traced to an explicit double cover

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

K3 surfaces over number fields with geometric Picard number one

A long-standing question in the theory of rational points of algebraic surfaces is whether a K3 surface X over a number field K acquires a Zariski-dense set of L-rational points over some finite extension L/K. In this case, we say X has potential density of rational points. In case XC has Picard rank greater than 1, Bogomolov and Tschinkel [2] have shown in many cases that X has potential densi...

متن کامل

Counting Elliptic Surfaces over Finite Fields

We count the number of isomorphism classes of elliptic curves of given height d over the field of rational functions in one variable over the finite field of q elements. We also estimate the number of isomorphism classes of elliptic surfaces over the projective line, which have a polarization of relative degree 3. This leads to an upper bound for the average 3-Selmer rank of the aforementionned...

متن کامل

Surfaces in P over finite fields

For a smooth surface X in P of degree d, defined over a finite field Fq with q elements, q prime, we prove that X has at most d(d+q−1)(d+2q−2)/6+d(11d−24)(q+1) points with coordinates in Fq.

متن کامل

Expansion of Orbits of Some Dynamical Systems over Finite Fields

Given a finite field Fp = {0, . . . , p − 1} of p elements, where p is a prime, we consider the distribution of elements in the orbits of a transformation ξ 7→ ψ(ξ) associated with a rational function ψ ∈ Fp(X). We use bounds of exponential sums to show that if N ≥ p1/2+ε for some fixed ε then no N distinct consecutive elements of such an orbit are contained in any short interval, improving the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2022

ISSN: ['1687-0247', '1073-7928']

DOI: https://doi.org/10.1093/imrn/rnac341